Damped harmonic motion
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Up to this point we have assumed that no frictional force act on the system. 1
For real oscillator, there may be friction, air resistance act on the system, the amplitude will decrease.

This loss in amplitude is called "damping™ and the motion is called “damped harmonic motion”™.

Friction or other sources of external work can lead to a loss of energy, (known as dissipation),
from an oscillating system. This phenomenon is referred to as damping.
Damping has two principal effects on the oscillating system. It

- decreases the amplitude of the oscillations and

- decreases the frequency (increases the period) of oscillations.

Damped Harmonic Motion

Consider an object of mass m is supported by a light spring
of constant k. We assume that there is a viscous retarding
force (-cv) that is a linear function of the velocity.

The differential equation of motion is, therefore,
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Simple sine or cosine solutions do not work, because of the presence
of the velocity-dependent term. LY SR IR IR I B S

Let D he the differential operator d/dt. -‘5,
The suitable solution for this case is; t [DE +2yD+ mﬁ I r=10 i
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where

There are three possible situations:
L. g real > 0 {(Overdamping)

I1. q real = 0 (Critical damping )
[11. q imaginary (Underdamping)

I. Overdamped case:

Both exponents are real. The constants A1 and A2 are determined by the initial conditions.
The motion is an exponential decay with two different decay constants, (y - q) and (y + q).
The mass will be prevented from oscillating by the strong damping force.

I1. Critical damping case:
Here q = 0. The two exponents are each equal to y.
D+yD+7px=0

we make the substitution u = (D + ¥)x, which gives

D+yu=0
u=Ae"

Equating this to (D + ¥)x, the final solution is obtained as follows:

Ae =D+ P)x -
A =e"™(D + y)x = D(xe")
o Orverdamped
. xe"=At+B

x(t) = Ate™" + Be™"*
As in case [, the motion is a returning to

-~
equilibrium with no oscillation. Crancally

damped
EXAMPLE 3.4.1

An automobile suspension system is critically damped, and its period of free oscillation
with no damping is 1 s. If the system is initially displaced by an amount x,, and released
with zero initial velocity, find the displacement att=1s.

Solution:

For critical damping we have y=c/2m = (k/m)'/2 = @ = 27/T,. Hence, ¥ = 27 s™! in our
case, because T, = 1 s. Now the general expression for the displacement in the critically

damped case x(¢) = (At + B)e™", so, for t =0, x, = B. Differentiating,



we have #(t) = (A — yB — yAt)e™", which gives %,=A - yB =0, s0 A= yB = yx, in our
problem. Accordingly,

x(t) =x,(1 + yt)e" =x,(1 + 2mt)e 2™
is the displacement as a function of time. For ¢ = 15, we obtain
(1 + 2m)e 2 =x,(7.28)e628 = 0.0136 x,,
The system has practically returned to equilibrium.

I11. Underdamping case:

If the constant y is small enough that q is imaginary. The
motion, in this case, is oscillatory but with an ultimate
death. Let introduce the constant @, such that; q = 10,

n = k o
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Then:

Which is known as the angular frequency of the under-
damped oscillator. The solution for the underdamped
oscillator could be;
A 4 A
x(t) =e yt(__ e+z(codt+60) +'§e z(wdt+90))

We now apply Euler’s identity? to the above expressions, thus obtaining
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i;— cos(w,t +6,) +i -;i sin(w,t +6,)
% cos(@ t +6,)— z% sin(w ;t + 6,)
~x(t) = e " (A cos( t +6,))

we can express the solution equally well as a sine function:

x(t) =e7" (A sin(@,t + ¢,))



The main differences between the solution of the underdamped
oscillator and the undamped oscillator are :

i= The presence of the real exponential factor ¢! leads to a
gradual death of the oscillations.

2= The underdamped oscillator vibrates a little more slowly
than the undamped oscillator does. Le, w, < o, because of
the presence of the damping force,

The period of the underdamped oseillator is given by

7=Z =2k
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Thus, in one complete period \\U}’{h\ _.ﬂ' '__ :
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the amplitude diminishes by a

factor s

EXAMPLE 3.4.2

The frequency of a damped harmonic oscillator is one-half the frequency of the same
oscillator with no damping. Find the ratio of the maxima of successive oscillations.

Solution:
PA

We have 0, = %wo = (w5 —y*)"?, which gives wj/4=wf-7% so ¥ = w,(3/4)"2,
Consequently,

¥T, = w,(3/4)V2 [27/(0,/2)] = 10.88
Thus, the amplitude ratio is

e "M = 71088 = 0,00002

This is a highly damped oscillator.

Energy Considerations

The total energy of the damped harmonic oscillator is given by the sum of the kinetic and
potential energies:

E= -lz-ma’c2 +ék9c2 (3.4.18)

This is constant for the undamped oscillator, as stated previously. Let us differentiate the
above expression with respect to ¢:

Ccil_f = mxx + kxx = (mi + kx)x (3.4.19)



Now the differential equation of motion is mx + ¢x + kx = 0, or m# + kx = —cx. Thus, we
can write

& _ 0 (3.4.20)
dt
Quality Factor
2w times the energy storved in the oscillator 2n E

Quality Factor(Q) =

the energy lost in a single period of oscillation T, - (AE)T,

If the oscillator is weakly damped, the energy lost per cycle is small and () is large.

The ratio of the energy stored in the oscilator to that 1ostin a
single period of oscillation is characterized by a parameter ), called
the quality factor. This factor is related to w, by the relation




